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THE MAKING OF MEANING: A MODEL FOR INTERPRETING
MAMEMATICS EDUCATION RESEARCH

Vicky 14. Kouba, University at Albany

INTRODUCTION

The body of researah on the learning and teaching of mathematics has

grown exponentially in the past twenty years. A majority of the theories

and philoaophies that have been developed to guide and sustain that

researdh and to provide logical epistemologies for the analysis and

synthesis of the results that research have been specific to well-

defined domains within mathematics. In a relatively new area, as modern

mathematics education research is, the reliance on domain specific

theories, philosophies and models has been an efficacious and intellectual

necessity. Now, however, we are at a point where the body of knowledge

related to those domain specific areas has reached a critical mass that

lends itself to an examination (and in some cases, a re-examination) of

more global theories, philosophies and models that had to be tabled while

the domain specific ones were developed and refined.

The model presented in this paper is one attempt at examining a

unifying theoretical representation of the intellectual processing that

occurs between the identification of a task within a classroom setting and

the commencement of actions planned as a resolution of the task by the

teacher and students. Tbe mcdel depicts the interactions among attending

encoding, decoding and negotiating, which are viewed as the primary

processes used to "give meaning" to an identified task in a mathematics

classroom.

The mcdel is designed from an information processing interpretation of

attending, encoding and decoding. However, the information processing
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approach taken is ! "weak" one, using CObb's (1990) definition of mweak,"

in that the claim:made about the value of the computer metaphor for

understanding mathematical cognition is a moderate or weak one. The

philosophy underlying the development of the model is more "social" in

nature, reflecting, as Cobb (1990) recommends, that students are actively

engaged with teachers in a classrcan canoinity that includes negotiation.

Both the teacher and the student are assumed to be engaged in constructing

cognitive knowledge and affective perceptions through the use of verbal,

figural, %inesthetic and other representations. There are several

important assumptions made in relationship to the model: 1) Instruction as

it occurs in the classroom is a social-cultural/anthropological process

involving "negotiated tasks" that are attributed "community meaning" that

is acquired through a process external to individual or idiosyncratic

constructions of meaning and are derived from shared teadher-student and

student-student discourse. 2) The teacher and the students come to that

discourse with internally constructed "situated tasks" that are the result

of dynamic interactions amiclq individual attending, individual frameworks

of knowledge, and individual systems of perceptions. 3) Aspects and

interactions of cognition and what has commonly been identified as "affect"

both are crucial to the formation of situated tasks.

LINKING TEACRLIC 1W1) IEABNING

A call for the unification of different areas of mathematics education

research has been made on many fronts. Romberg and Carpenter (1986) called

for a rethinking of the school mathematics program in light of implications

in two areas of research: inquiry on how students learn mathematics and

inquiry on teaching. After careful reviews of the current state of



3

mathematics instruction, recent developments on student learning and recent

developments on teaching, Romberg and Carpenter (1986) identify several

areas where rtseerchers should ccncentrate their efforts in the next two

decades. One of those areas is the construction of dynamic models that

bridge the learning-teaching gap. Carpenter and Romberg make the case that

these models should reflect the roles of change, learning, and growth and

should depict the way meaning of specific mathematical tasks is constructed

in classrooms.

The work on integrating research on the teaching and learning of

mathematics has been one focus of the National Center for Research in

Mathematical Sciences Education (Fennema, Carpenter, & Lamon, 1988). In a

recent book from that group, Fennema and Carpenter (1988) present a general

model for research and curriculum:development for integrating cognitive and

instructional science (see Figure 1). They describe the model as one that

provides a promising new paradigm for the study of teaching and learning,

and that:

...asRigns a central role to teachers' and students' thinking.
Classroom instruction is based on teachers' decisions and the
effects of instruction on students' behaviors and learning are
mediated by students' cognitions. ...teachers' decisions are
presumed to be based on their knowledge and beliefs as well as
their assessment of students' knowledge through their observation
of students' behaviors. (pp. 8-9)

Thus, any global mcdel related to researdh in mathematics education

would profit from building on the initial work done in linking teaching and

learning. However, other links must also be concidered, particularly those

that extend the definitions of cognition and that integrate information

processing theory with affective and cultural theories.
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um= (maw, mirear AND CULMURE

While acknowledging the central role that information processing

theories have played in enhancing the research on mathematics education,

Greer and Versdiaffel (1990) summarize the major criticisms directed at

information processing theories: 1) emphasis on cognition that de-

emphasizes affect, context, culture and history; 2) emphasis on symbol

manipulation that de-emphasizes meaning; and 3) emphasis on precision of

description that devalues knowledge or thinking that cannot be symbolically

or precisely represented.

McLeod (1990) and MbLeod and Adams (1989) provide thoroulh reviews ct

the need for integrating affect and culture with cognition in mathematics

education research. McLeod (1988, 1990) suggests that Mandler's

application of an information-processing linked theory of affect to

mathematics education (Handler, 1984, 1989) provides an essential basis for

describing children's emotional reactions to mathematical problem solving.

Handler's (1989) application centers on the effect of an interruption or

discrepancy in the completion of a schema-activated action sequence.

McLeod (1990) demonstrates how effective this theory is in describing

children's actions an a "chickens and pigs" problem (If there are x

chickens and pigs altogether and y legs, how many of the animals are

pigs?).

However, mudh of this description and much of Mandlerls theory focuses

on actions that occur after the children have "understood" or assigned

meaning to a situation. Systematic analysis of the interaction of affect,

culture and cognition during the formation of meaning prior to the

7
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initiation of an action sequence may advance the application of Mandler's

theory.

Brown, C011ins and Duguid (1989) make a strong case for viewing

learning and cognition as fundamentally situated in the activity and

context in which learning takes place. Lave (1988), Saxe and Gearhart

(1988), and others also make a strong case for the role that culture and

situation play in the application of mathematics as well as the learning of

mathematics. Thus meanings for concepts, procedures and situations are

partly the result of the activity, context and culture in which the

learning takes place. Greer and Verschaffel (1990) sqpport the need to

make context and culture a major part of explaining learning; however, they

encourage keeping the information processing theory as well. They state,

"maximising the realizable value of cocinitive research in educational terms

depends crucially on multi-disciplinary partnership." (p. 8) It seems,

then, that the development and verification of models linking aspects of

information prooessing theories with aspects of situated cognition theories

could benefit researdhers by providing the means for a combined application

of successful but competing viewpoints for understanding how children learn

mathematics.

WING OF MEM= NM

The proposed "making of meaning" model for interpreting mathematics

education research, see Figure 2, was constructed using a template designed

to account for links between teaching and learning and for links among

cognition, affect and culture. The model reflects the idea that the chief

protagonists in linking the teaching and learning processes are the teacher

and the student. Thus the models contains the external and internal
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processing arenas for both the teacher and the students. Ihe student

processing arenas are represented as a single student, but should be

thought of as a stack, one arena for each member of the class. Thus,

attending to the TASK, constructing an internal individual SITUATED TASK,

and constructing a NEGOTIATED TASK occur not just between two protagonists,

but many. The gateway between the internal and external arenas is the

attending process. The external arena is the milieux of the classroom and

the internal arena is working memory space and long-tenamenory.

The notion of the internal and external arenas and of an internal

SI1'UATO3 TASK is similar to that suggested by Sowder (1985) in his

discussion of what psychology has to offer with respect to encoding

mathematical tasks. His diagrams (see Figures 3 and 4) for solution

sequences for routine and non-routine problems depict external and internal

processing, as well as external and internal versions of tasks.

TASKVARIABLES

The entry point into the model is the TASK node in the external arena.

within a classroom a task is considered, whether presented by the teacher,

a text or a student. The TASK has associated with it a set of variables.

The number and forms of these variables are not fixed, but are open to

interpretation by the human players in the classroum through their physical

and cognitive processes of attending, decoding and encoding. Although

these variables are not fixed, they may be classified according to

conventional systems.

In his hierarchy of task variables, Kulm (1984) links content, context

and syntax variables with the students" surface and semantic analyses

performed during the understanding-the-prdolem stage of problem solving,

0
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figure 4. Sequence illustrating the distinction between a routine

problem and a genuine problem from Sowder (1985), p. 142.
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which may be characterized as the stage in which students begin to make a

task or situation meaningful. Syntax variabl.es are defined as "those

variables describing the arrangement of and relationships among words and

symbols in a problem" (KUlm, 1984, p. 16). For the purposes of this paper,

the words and symbols themselves, separate from any connotation or

denotation they may have when examined together, are considered to be

syntax variables. Other syntax variables include those listed by Barnett

(1984): length variables, grammatical complexity variables, nuneral and

symbol forms, question sentence position and form, and sequence variables.

Kulm's definitions of content and context variables also hold for this

paper, with a few major additions. Content variables are those that refer

to the mathematical meanings of a situation such as content area (or

domain), type of operation involved and the mathematical complexity of the

problem. COntext variables are the non-mathematical or incidental

meanings, described by Webb (1964) as those that refer to the form of the

problem (problem embodiment or representation, verbal context or setting,

and information format). However, as has been shown in studies of

students' beliefs about the nature of mathematics (Kouba & MODona1d, 1991),

the class of context variables must also include where and Awn the

concepts or processes depicted in a situation were learned, practiced and

used. Thus, tasks have both surface and semantic cultural variables.

Also, another set of context variables that accompany the task variables

through the ATTENDING gateway are the environmental variables that have

been shown to affect the attending process (such as noise level,

temperature of the roam, time of day, distractions outside the windows,

13



comfort of the chair, arrangement of the chairs, number and identity of

people in the room, etc.)

ATTENDING AND= INIERNAL ARENA

The TASK is "sensed" by the teacher and the students. That is, the

teacher and the student . rtively attend to the TASK variables. The

actual ATTENDING process works as described in most information processing

literature. Information is attended to, taken in, decoded, rearranged and

encoded, and stored in same form in the short-term portion of working

memory. Aal of these processes are regulated by some type of decision-

making and/or valuing mechanism, which in turn is influenced by the

existing nature of the person's long-term memory. The model depicts only

the underlying influencing interactions: the ATTENDING process is mediated

by existing FRAMEWORKS OF KNOWLEDGE and existing SYSTEMS OF PERctkaiON.

lb reiterate, FRAMEWORKS OF KNOWLEDGE and SYSTEMS OF PERCEPTION

influence and indirectly control what the teacher and student attend to in

a TASK; how the variables related to the TASK are represented and given

meaning during the decoding, rearranging and encoding; and how the TASK

gets stored as a SITUATED TASK. Thus, the attending, encoding and deooding

processes as influenced by frameworks of knowledge and systems of

perception are the means by which TASKS became SITUATED TASKS.

Erammrisa_saLignagigtt Although both the teacher and the student

have the same general categories of frameworks of knowledge and systems of

perceptions, there are differences. Teachers have FRAMEWORKS OF KNOWLEDGE

that consist of formal and informal knowledge about:

a) the content of mathematics,

bi) learning,

14
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c) teaching (pedagogy)

d) other content areas (AUch often serve as contexts for

mathematical situaUons).

e) beliefs about the nature of mathematics, and

f) schooling as a social endeavor.

Students have formal knowledge about the content of mathematics and about

cther content arras. They have informal knowledge about beliefs about the

nature of mathematics and about schooling as a social endeavor. If

students have knowledge about teaching and learning, it, too, is at an

informal level.

Formal knowledge is that which has been ccnstructed as part of

systematic study, usually in schooling sitoations. Formal knowledge

closely approximates a social consensus of the structure of that particular

area of study. For example, formal conceptual and procedural knowledge

about mathematics approximates the structure presented in texts and the

structures envisioned by mathematicians.

As an aside, one could engage in a philosophical discussion over which

of the task variables constitute the formal mathematical "truth" cr

"reality" for a given situation or a given set of concepts and procedures.

However, the position taken in this paper is that there is no external

"truth" that constitutes the content of mathematics or the content of a

situation. Mathematics has negotiated conventions and negotiated base

postulates that then are processed by the prevailing logic system (again, a

negotiated system) Thus, formal knowledge is knowledge that approximates

the negotiated consensus. For example, the areas of additive,

multiplicative and algebra structures are not "external truth," but are

15
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negotiated systems drawn from the internally situated knowledge of those

who engage in the negotiation process. For the most part, "additive

structures" have a stable negotiated delineation. "MUltiplicative

structures,", on the other hand, are still being negotiated. Several

groups of researchers have differing viewpoints about the nature of

multiplicative structures. Negotiation is taking place in the mathematics

education literature as each group explains the internal processing and

logic that supports their interpretation. As addressed in a later section

of this paper, this making of meaning model may prove useful in examining

and furthering that negotiating process by providing a means to juxtapose

and integrate the differing perspectives.

Informal knowledge has been acquired through individual experiences.

It may be systematic in nature, but it has not been acquired through an

organized program of study.

Knowledge about the content of mathematics has been examined by

Hiebert and Lefevre (1986), who have provided definitions and a careful

analysis of =NC:W=1J and PROCEDURAL knowledge in mathematics. Briefly,

they define conceptual knowledge as a connected web of knowledge rich in

relationships, "a network in which the linking relationships are as

prominent as the discrete pieces of information" (Hiebert & Lefevre, 1986,

pp. 3-4). They identify two levels (a continuum, really) of conceptual

knowledge: primary, which is tied to context and therefore not very

abstract; and reflective, which is less tied to specIfic contexts and more

abstract than the primary level. Procedural knowledge they define as

consisting of two parts:

One part is composed of the formal language, or symbol
representation system, of mathematics. The other part consists

16
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of the algorithms, or rules, for completing mathematical tasks.
(Hiebert & Lefevre, 1986, p. 6)

Although these definitions were dedigned for conceptual and procedural

knowledge in mathematics, I believe they are reflective enough in nature to

generalize to other areas of formal knowledge that teachers possess.

Conceptual and procedural knowledge about learning, teaching, and other

content areas can be identified. For example, researchers looking at the

interaction of learning and teaching in the mathematics classroom

(Carpenter, T.F., Fennema, E., Peterson, PL.1 Chiang, C. & Loef, M., 1989;

Cobb, PO, Yackel, E., & Wood, 1%, 1988) suggest that teachers should

possess the following knowledge about student learning: knowledge of

content domain, knowledge of problem difficulty, knowledge of distinctions

among problems that result in different processes of solution, and

understanding of the stages students pass through in acquiring concepts and

processes in a domain. These areas of knowledge may be classified as

conceptual knowledge. Likewise, the following, whidh were also suggested

as good requisite knowledge for teachers, may be classified as primarily

procedural knowledge (although all of them also have components of

conceptual knowledge): knowledge of ways to assess students' knowledge in

the domain, knowledge of the processes used to solve different problems at

each stage of acquisition of concepts, understanding of the nature of the

knowledge that underlies these processes, knowledge of the classroom

discourse procedures that promote the development of different solution

processes, and knowledge of the social procedures and interactions of

classroom teaching.

CCINCEMAL and PROCELLIRAL knowledge also may serve as adequate initial

categories for knowledge about other subject areas such as science, art,

17
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and social studies, at least in terms of how those subjects are integrated

with mathenatics. However, teachers and students must also possess

knowledge about those areas as contexts for the application of mathematics.

More will be said about this in a moment.

Items (el and (f), beliefs about the nature of mathematics and

schooling as a social endeavor, differ from the other areas of teacher and

student knowledge considered thus far. While the areas have conceptual and

procedural aspects, they are, in essence, the context in which all of the

other areas of knowledge are considered. FUrthermore, beliefs about the

roles of the teacher and the students and about the process of schooling

are also part of knowledge about schooling as a social endeavor. Thus,

teachers and students must possess CMITECILIAL knowledge about beliefs,

schooling and other subject areas.

As with CORQUMMUJkrcmledge, it is useful to distinguiSh between two

levels of 02411EXIUAL knowledge, a primary level and a reflective level.

The primary level of conceptual knowledge (that tied to contexts) may be

considered a sub,category of the primary level of CONTEXICIAL knowledge,

because the primary level of conceptual knowledge is limited to mathematics

topics as contexts. Hiebert and Lefevre (1986) use the primary

relationship of linking two pieces of information about decimal numbers as

an example. The primary level of cournium, knowledge includes those links

as well as links between a mathematical concept and an application of that

concept or a belief about that concept.

The reflective level of CONTEXWAL knowledge is the abstract

recognition of pattexns within contexts. It is the realization that

mathematics may be decontextualized or generalized. The ability to operate

18
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at the reflective level of 031TENIUAL Mo./ledge may be a prerequisite for

developing all reflective conceptual knowledge, most primary conceptual

knowledge and any meaningfUl procedural knowledge. To elaborate, Hiebert

and Lefevre (1986) seem to treat conceptual and procedural knowledge as

knowledge decontextualized fram situations and culture. However, if Brown,

Collins and Duguid (1989) are correct, the majority of the content

knowledge held by same teachers and most students is embedded in the

learning contexts, the belief systems and the cultures of the person.

Thus, much of the conceptual and procedural knowledge is constructed and

stored as SITUATED KNOWLEDGE. SITUATED KNOWLEDGE may be defined, then, as

conceptual and procedural knowledge that has not been decontextualized but

remains integrally a part of the situation, beliefs and culture in which it

was learned.

A, person who has a well-developed reflective level of contextual

knowledge knows how, why and to what extent conceptual and procedural

knowledge are embedded in situated knowledge. He or she knows about the

role of context and culture in learning and knows what aspects of meaning

are lost or altered when knowledge is generalized to the abstract levels of

conceptual and procedural knowledge. This person knows, too, the kind and

extent of the transformations that nay take place in meaning When the

abstract conceptual =procedural knowledge is reapplied in new situations,

that is, "recontextualized."

Perhaps it is reflective contextual knowledge that Kaput (1987a) is

calling for in his recent remarks about the need for students to possess

knowledge about representations. Reflective contextual knowledge about

representations may be the key in addressing the failure of students to

19
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cross between symbol and referent, a failure that Kaput (1987a) points out

leads to failure to estimate or to have a sense of the magnitude of a

calculation. Kaput laments that mathematics educators and researchers have

given little attention to teaching how various mathematical and

nonmathematical representation systems work and how they relate to one

another. Perhaps mathematics educators and researchers have not attended

to those issues because there existed no theoretical framework for helping

to make sense of the situation. Kaput (1987a, 1987b) lays the groundWork

for such a theory, which when developed may fit into a larger theory for

"making meaning" as an aspect of reflective contextual knowledge.

As a summary for this section on FRAMEWORKS OF KNOWLEDGE, a more

detailed diagram for the portion of the model is offered (see Figure 5).

ATTENDING links directly to SITUATED KNOWLEDGE, which may be transformed

throu4h the use of CUNTECIALICAMUDDGE into CONCEPTUAL and PROCEDURAL

KNOWLEDGE, and vice versa.

gygongisLaroptigni. In humans, affect, in its broadest definition,

is a mediation process on cognition. COgnition does not occur without

affect (Mandler, 1989; MOLeod, 1989, 1990). McLeod (1990) and Hart (1989),

in syntheses of the affect domain, identify beliefs, attitudes and emotions

as constructions (with "cold" to "hot" valuing or arousal prupertieG) that

influence the construction of knowledge and are part of that knowledge.

Hart (1989) provides useful definitions for beliefs, atticades, motions

and affect:

Note that instead of referring to affective variables, affect, or
attitudes towards mathematics, I am now using the terms tgligisp
attitmam, and gmtjang, which, for me, lessens the confusion
associated with the meanings of affective variables, affect, and
attitudes toward mathematics. Here, bslies is used . . . to
reflect certain types of judgments about sets lot' ccncepts. .

20
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I use attitude toward an object to refer to emotional reactions
to the abject, behavior towards the object, and beliefs about the
object. Emotion is used here . . . to represent a hot gut-level
reaction. Affect is used only as a: synonym of emotion; many
educators use the term in a more general sense. (p. 44)

McLeod (1990) makes same further distinctions among beliefs, attitudes and

emotions, "So, the terms beliefs, attitudes, and emotions are listed in

order of increasing affective involvement, decreasing cognitive

involvement, increasing intensity, and decreasing stability." (p. 17)

In the model presented in this paper, SYSTEMS OF PERCEPTION has been

deliberately chosen as the label for this area of concern. Perceptions are

defined inlaxst dictionaries as cognition, as products of the process of

perceiving, and as recognitions of moral or aesthetic (panties. Systems

of perception are constructed ill conjunction with and in symbiotic exchange

with frameworks of knowledge. In theory and for the ease of discussion, we

can separate the two, but in actual human functioning they cannot be

separated.

The systems of beliefs that are included in SYSTEMS OF PERCEPTION

differ frail the beliefs about the nature of mathematics mentioned in the

section on frameworks of knowledge in the extent of valuing, the type of

judgment made, and the object of the belief. BELIEF in SYSTEMS OF

PERCEPTION refers to the beliefs one holds about oneself and beliefs that

carry a "good" or "bad" connotation. A, belief about the nature of

mathematics that has little valuing judgment attached is that mathematics

is only concerned with numbers and operations. A belief that has a valuing

judgment and that therefore would be part of SYSTEMS OF PERCEPTION is that

mathematics is for "nerds" who are social outcasts.
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Mae-old and Adams', (1989) book on affective issues and prOblem solving

is an excellent summary of researdh and construction of SYSTEMS OF

PERCEPTION. It may be helpfUl, however, to highlight same of the major

areas within SYSTEMS OF PERcEPTTON that influence the formation of meaning.

TWo areas of BELIEFS that have been studied in depth are confidence,

especially in relationship to gender differences (Meyer & Fennema, 1988;

Reyes, 1984), and causal attribution theory (Neck, 1986; Heckhausen,

1987), which explores the reasons children have for explaining their

success and failure. Areas related to attitude that have received recent

attention are motivation and the setting of goals. And, an area within

emotion that has traditionally received heavy attention in mathematics

education is anxiety. Specific examples of the interaction of these areas

will be considered in the next section.

gilladAILDOLLAA Situated tasks are the products of the Interactions

among attending, frameworks of knowledge and systems of perceptions as both

the teacher and the students assign meaning to the initial TASK. The

assignment of meaning to the initial tactic is akin to "making sense," which

von Glasersfeld (1987) reminds us, in a constructivist epistemology, relies

on the use of material (in this case, frameworks of knowledge and systems

of perception) that a person already bas.

To clarify, re-examine Sowderts (1985) diagrams for solution sequences

(Figures 3 and 4). In the internal portion of his diagrams an encoded

version of the task is followed by questions that elicit schema searches.

Prior to this kind of seardh, however, a schema search to assign meaning

must occur as a, means for encoding a version of the task. Thus, during and

after the intake of task variables, the internal processing proceeds as
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though the following kinds of questions were asked: Do I know anything

about these variables? Do I recognize these variables? What do these

things mean? What do I know, believe or feel that can help me make sense

of this and put it all together? Schema that can provide answers to these

questions are sought.

Because this model of making meaning is built on ccnstructivist

assumptions (van Glasersfeld, 1987), this making sense involves finding a

way of fitting available schema into a pattern that is circumscribed by the

specific constraints of the task variables, the environmental variables,

and the rest of the frameworks of knowledge and systems of perception

residing in long-term memory. A key question at this point is how the

seeking is done. What is the means of communication? In the model the

routes of access among attending, frameworks of knowledge and systems of

perceptions are verbal, figural, kinesthetic and other means of

representation. An ipportant point to remember in understanding the nature

of the process of situating a task is that although the teacher and the

students theoretically have access to the same TASK variables, the

representations chosen to internally represent those variables need not be

an exact matdh to any external definitions or connotations. 'lb be adequate

representations, they need only be compatible and not clash with the sense

of the TASK or with the other classroom protagonists' expectations.

(Inadequate representations, misrepresentations, or misconceptions are not

addressed in this paper, but could be addressed by the model, and may need

to be addressed in future applications and modifications of the model.)

Same examples may help to clarify haw the teacher and students use

the interactions among attending, frameworks of knowledge, and systems of
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perception to form situated tasks. The first example is drawn fram

individual interviews with first through third graders Who were asked to

solve multipaicative word problems (Kauba, 1990). For a problem involving

how 6 horses could fairly share 24 apples, three children were adamant that

each horse should get just me apple. These children recognized the

problem as one involving grouping, but accepted that there would be "a lot"

of apples left aver. They also were able to solve correctly a similarly

structured problem about people sharing tomatoes. All the evidence showed

that they had attended to a division structure and had some schema for

making sense of division problems that involved sharing. However, farther

probes during the interviews revealed that they had attended to the context

of horses, which had activated a schema related to their experience with

horses. The children keligysi that it would be unhealthy for horses to eat

more than one apple, thus each horse should get just one apple. These

children had situated the task in their experience (all were from a rural

home setting) and the answer they gave was correct for the SITUATELITASK

they were responding to. The children's meaning for the task did not

conflict with the task. Nor did it appear to conflict with the

expectations of the other protagonist in the situation, for the interviewer

accepted all answers without indicating that the children should think of a

problem only in terms of the numbers and mathematical operations. The

children probably were not cued by the setting into applying "mathematics

classroom" actions or schema because the interview was conducted in a

separate classroam.

The second example is from a similar study of young children (Eouba,

1989), in which a third grader was asked to respond to a task similar to
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the apples-and-horses task (finding how many elements in group When given

the total and the number of groups). The child responded, "Oh, that's

making groups and that's division." She evidently used existing knowledge

frameworks constructed from prior experience with formal instruction to

give meaning to the situation. However, she also used same systems of

perception in the form of beliefs when she went on to say, "We haven't

learned division yet, so I can't do this." She evidently held the belief

that She could do only what had been formally taught. She would not

attempt the problem, even though she had physical materials available for a

trial-and-error approach and even though she had solved correctly other

division problems that imolved finding how many groups Whengiven the

total and the number of alements in a group. She did not refer to these

latter problems as "division," and thus, appeared to have situated them

differently.

Many other examples are present in the researdh literature, especially

in children's problem solving and in examination of students' and teadhers'

beliefs and attitudes (Kouba & MtEtnald, in press; Nesher, 1988; Chlsson,

1988; Schoenfeld, 1988; Thcmpson, 1988).

MEOMIATED TAsic MD THE COMM AMA

The external arena is the classroom, for this mcdel. Yackel, Dobb,

wood, Wheatley and Mlexicel (1990) in their chapter on the importance of

social interaction, describe classrooms in which student-taaCher and

studeat-student interactions promote the development of personally

meaningful solutions to tasks. FOr this to take place, however, same

negotiation or discourse must occur so that the teachers and students have
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a community understanding about the nature of the tasks and the nature of

the classroom as a place for interaction.

Cne a the teadher's roles in the negotiation is to work towards a

generalized =MATED TASK that allows for the possibility that a range of

individually situated tasks will "fit" the negotiated task.

Classroom negotiation, whidh should result in a NEGOTIATED TASK, is

also the time and place for both the students and teachers to chedk on the

viability of their situated tasks. In this sense, the teadher and the

students are communicators in a common context and tanction as von

Glasersfeld (1987) describes. That is to say, for satisfactory

communication to occur, the communicators' individtal SITUATED TAUS need

be compatible enough that they do not clash with the other communicators'

expectations. If clashes are apparent, then negotiation should occur. It

Should be noted that negotiation means that the teadher is as willing as

the students to reexamine his or her meaning or situating of a task. The

assumption is made that SITUATED TASKS are not immutable. Refocusing or

re-attending to a different set of task variables would result in an

altered SITUATED TASK that would still be constructed by the individual.

Also, because the teacher is the only adult protagonist Involved, it

is the teacher's responsibility to know enough about the internal process

of constructing situated tasks, enoughabf-it the underlying structures of

the mathematics involved, and enough about communication and the social

context of the classroom to help all protagonists (self included) re-

situate a task internally and check that there is a consistent organization

for that situating, whidh, according to von Glasersteld (1987) would lead

to "undexstanding."
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Not enough research has been done to provide 4 full r.nge of

descriptions for negotiation or discourse in the mathematics classroom.

However, initial studies on the use of discourse, especially in small group

work are providing same direction Mobb, P., Yackel, E., & Wood, T., 1988;

Lampert, 1986; Lemoyne & Tremblay, 1986; Carpenter, Fernema, E.,

Peterson, P.L., Chiang, C. & Loef, M., 1989; Resnick & Ford, 1981; Yackel,

(obb, Wood, Wheatley and Merkel, 1990). As summarizPa in Kouba and

Franklin (in press) same common featuree for the negotiating discourse

include discourse that is: centered on child-generated actions and ideas

with the children as main participants; facilitated by the teacher so that

all ideas, even inoorrect ones are critically examined by all participants;

linked to previous experiences with physical and pictorial models as

consensus is negotiated so that no one type of representation mode

dominates; and comprehensive in the formal and inforral language used so

that the comsensus is not tied to any one verbal representation. MUch

still needs to be done in this area.

RESEARCH CH SIMPLE MULTIPLICATIVE SMUCTURES

The model presenbad in this paper may be used as a means for analyzing

aspects of the major theoretical approaches in the researdh on children's

processing of multiplicative situations.

Nesher (1988)Ythree76,0 major theoretical approaches in the analysis

of simple multiplicative structures. Two emphasize mathematical constructs

and are exemplified by the work of Vergnaud (1983, 1988), Schwartz (1979,

1988). Vergnaud's and Schwartz's approaches are also classified as

"dimensional analyses" because they are concerned with the relationship

between the number and the nature of a gpantity (a nuMber and its label or
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unit). The third major approach is a textual analysis focused on the

propositional structure of word problems. Nesher's work (Masher, 1988;

Paled & Nesher, 1988) exemplify this approach.

All three approaches depict children attending to number and word task

variables in a multiplicative situation (usually a word problem). In this

respect, all three approaches have a component that links CONCEPTUAL and

PROCEDURAL FRAMEWORKS OF KNOWLEDGE to the meaning that children assign

multiplicative situations. The nature of and the extent of the emphasis on

the ccnceptual and procedural knowledge differ, however.

Vergnaud's (1983, 1988) analysis, diagramed as four quantities related

in both a scalar and functional direction between and across two measure

spaces, assumes that children have a OONTEXIUAL BELIEF abcut the nature of

mathematics that appears to value the abstract above the context. This

valuing of the abstract is demonstrated by the penchant for representing

relationships within and subcategories of multiplicative structures as

numbers in pure symbol notation (scalar and function) freed from the

constraints of the units attached to the numbers. In essence, the nature

of the quantities is controlled. The dimensional analysis is a means for

moving numbers as efficiently as possible to the most abstract, generalized

spaces of CONCEPIUAL AND PROCEMIALMMIELGE. This is done with little

attention to the issues about understanding that have been raised

previously in the discussion of the reflective level of CONTEXTUAL

KNOWLEDGE.

Schwartz's (1979, 1988) analysis also i centered in CONCEPTUAL and

PROCEDURAL FRAMEWORKS OF KNOWLEDGE, but has more CONTEXTUAL BELIEFS

components that may be attributed to those valued in science, and thus is
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SITUATED in science. The nature of the quantities, rather than being

controlled, is Used as the focus for categories. The labels or units for

quantities remain linked to the quantities and rate relationshios between

quantities are treated as entities that may be percei-red differently. For

example miles-per-hour, although of the same category as candies-per-bag,

may be perceived differently because it can be thought of as a single

entity, "speed." In this sense, Schwartz's analysis is less abstract than

Vergnaud's and addresses some of the representational understandings that

are a part of reflective CONTEXTUAL knowledge. Schwartz's analysis may be

viewed as one means for describing the effect of situating mathematical

structures (whose most abstract natures may be aptly portrayed by

Vergnaud's analysis) within the social conventions of science.

Nesheris (Nesher, 1988; Feled & Nesher, 1988) analysis moves farther

away from abstraction and describes a modification phase that is more

situated and contextual that Schwartz's, but also accounts for the

influence of language in more detail than a dimensional-analysis-of-units

level. In Nesher's analysis, the textual propositions, which are language

dependent situational relationships among the quantities and quantity/unit

pairs, must be transformed at the reflective level of contextual knowledge

into conceptual and prvcsdbral knowledge.

Thus it seems that the makIng-of-meaning model provides a neans for

viewing theories about multiplicative structures as successive or possible

alterations along or within a complsA level-of-abstraction scaffold. The

model may also help to incorporate other research on mul4plicative

structures. In particular, thework, of Fischbein, Deri, Nello, and Marino

(1985), on hypothesized primitive, intuitive mcdels and the related work of
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Bell, Greer, Grimson and Mangan (1989) on a competing claims theory for

choices in giving meaning to and solving multiplicative prdblems should be

examined.

As research helps to clarify the relationships among attending and

systems of perception, the multiplicative theories should be re-examined

and expanded to compensate for some of their current drawbacks. The

existing theories assume consistency of affect over time, consistency of

goal and motivation, and consistency of self-confidence. Without these

considerations, the theories will hold for generalized result but will not

be useful for looking at small classroom groups or individUals.

Likewise, this model for the making of meaning should be re-examined,

modified, and refined in light of continued dialogue about how people make

meaning. In particular, the negotiating processes and the interactions

along the social-cultural/ anthropological routes of access between tasks

and attending need to be expanded and clarified. This area could benefit

from further consideration of discourse theories, the social construction

of meaning and knowledge, and further research on teacher decision-making.
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